Creating Our K Nearest Neighbors Algorithm
https://pythonprogramming.net/programming-k-nearest-neighbors-machine-learning-tutorial/
# imports
import numpy as np
from math import sqrt
import matplotlib.pyplot as plt
import warnings
from collections import Counter
# To set charts to save as images we need to change the default behaviour
from matplotlib import style # inport style to change default behaviour of plot
style.use('ggplot') # use ggplot
dataset = {'k':[[1,2],[2,3],[3,1]], 'r':[[6,5],[7,7],[8,6]]} # defines as a dictionary 2 classes (k&r) with 3 features (lists of lists)
new_features = [5,7]
## Expanded one line for loop
#for i in dataset:
# for ii in dataset[i]:
# plt.scatter(ii[0],ii[1],s=100, color=i)
[[plt.scatter(ii[0],ii[1],s=100,color=i) for ii in dataset[i]] for i in dataset] # one line for loop
plt.show()
def K_nearest_neighbours(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to value less than total voting groups!')
return vote_result